1,388 research outputs found

    The natural history of bugs: using formal methods to analyse software related failures in space missions

    Get PDF
    Space missions force engineers to make complex trade-offs between many different constraints including cost, mass, power, functionality and reliability. These constraints create a continual need to innovate. Many advances rely upon software, for instance to control and monitor the next generation ‘electron cyclotron resonance’ ion-drives for deep space missions.Programmers face numerous challenges. It is extremely difficult to conduct valid ground-based tests for the code used in space missions. Abstract models and simulations of satellites can be misleading. These issues are compounded by the use of ‘band-aid’ software to fix design mistakes and compromises in other aspects of space systems engineering. Programmers must often re-code missions in flight. This introduces considerable risks. It should, therefore, not be a surprise that so many space missions fail to achieve their objectives. The costs of failure are considerable. Small launch vehicles, such as the U.S. Pegasus system, cost around 18million.Payloadsrangefrom18 million. Payloads range from 4 million up to 1billionforsecurityrelatedsatellites.Thesecostsdonotincludeconsequentbusinesslosses.In2005,Intelsatwroteoff1 billion for security related satellites. These costs do not include consequent business losses. In 2005, Intelsat wrote off 73 million from the failure of a single uninsured satellite. It is clearly important that we learn as much as possible from those failures that do occur. The following pages examine the roles that formal methods might play in the analysis of software failures in space missions

    Autonomous agile teams: Challenges and future directions for research

    Get PDF
    According to the principles articulated in the agile manifesto, motivated and empowered software developers relying on technical excellence and simple designs, create business value by delivering working software to users at regular short intervals. These principles have spawned many practices. At the core of these practices is the idea of autonomous, self-managing, or self-organizing teams whose members work at a pace that sustains their creativity and productivity. This article summarizes the main challenges faced when implementing autonomous teams and the topics and research questions that future research should address

    ‘Generic visuals’ of Covid-19 in the news: Invoking banal belonging through symbolic reiteration

    Get PDF
    open4siIn the early days of the Covid-19 pandemic, images of the virus molecule and ‘flatten-the-curve’ line charts were inescapable. There is now a vast visual repertoire of vaccines, people wearing face masks in everyday settings, choropleth maps and both bar and line charts. These ‘generic visuals’ circulate widely in the news media and, however unremarkable, play an important role in representing the crisis in particular ways. We argue that these generic visuals promote banal nationalism, localism and cosmopolitanism in the face of the crisis, and that they do so through the symbolic reiteration of a range of visual resources across news stories. Through an analysis of three major news outlets in the UK, we examine how generic visuals of Covid-19 contribute to these banal visions and versions of belonging and, in doing so, also to foregrounding the role of the state in responding to the crisis.Article first published online: February 16, 2022 This work was supported by the Arts and Humanities Research Council (grant number AH/T000015/1).openAiello, Giorgia; Kennedy, Helen; Anderson, C.W.; Mørk Røstvik, CamillaAiello, Giorgia; Kennedy, Helen; Anderson, C.W.; Mørk Røstvik, Camill

    Shape Space Methods for Quantum Cosmological Triangleland

    Full text link
    With toy modelling of conceptual aspects of quantum cosmology and the problem of time in quantum gravity in mind, I study the classical and quantum dynamics of the pure-shape (i.e. scale-free) triangle formed by 3 particles in 2-d. I do so by importing techniques to the triangle model from the corresponding 4 particles in 1-d model, using the fact that both have 2-spheres for shape spaces, though the latter has a trivial realization whilst the former has a more involved Hopf (or Dragt) type realization. I furthermore interpret the ensuing Dragt-type coordinates as shape quantities: a measure of anisoscelesness, the ellipticity of the base and apex's moments of inertia, and a quantity proportional to the area of the triangle. I promote these quantities at the quantum level to operators whose expectation and spread are then useful in understanding the quantum states of the system. Additionally, I tessellate the 2-sphere by its physical interpretation as the shape space of triangles, and then use this as a back-cloth from which to read off the interpretation of dynamical trajectories, potentials and wavefunctions. I include applications to timeless approaches to the problem of time and to the role of uniform states in quantum cosmological modelling.Comment: A shorter version, as per the first stage in the refereeing process, and containing some new reference

    Dynamics of evaporative cooling in magnetically trapped atomic hydrogen

    Full text link
    We study the evaporative cooling of magnetically trapped atomic hydrogen on the basis of the kinetic theory of a Bose gas. The dynamics of trapped atoms is described by the coupled differential equations, considering both the evaporation and dipolar spin relaxation processes. The numerical time-evolution calculations quantitatively agree with the recent experiment of Bose-Einstein condensation with atomic hydrogen. It is demonstrated that the balance between evaporative cooling and heating due to dipolar relaxation limits the number of condensates to 9x10^8 and the corresponding condensate fraction to a small value of 4% as observed experimentally.Comment: 5 pages, REVTeX, 3 eps figures, Phys. Rev. A in pres

    A Possible Crypto-Superconducting Structure in a Superconducting Ferromagnet

    Full text link
    We have measured the dc and ac electrical and magnetic properties in various magnetic fields of the recently reported superconducting ferromagnet RuSr2GdCu2O8. Our reversible magnetization measurements demonstrate the absence of a bulk Meissner state in the compound below the superconducting transition temperature. Several scenarios that might account for the absence of a bulk Meissner state, including the possible presence of a sponge-like non-uniform superconducting or a crypto-superconducting structure in the chemically uniform Ru-1212, have been proposed and discussed.Comment: 8 pages, 5 PNG figures, submitted to Proceedings of the 9th Japan-US Workshop on High-Tc Superconductors, Yamanashi, Japan, October 13-15, 1999; accepted for publication in Physica C (December 24, 1999

    On the Meaning of the Principle of General Covariance

    Full text link
    We present a definite formulation of the Principle of General Covariance (GCP) as a Principle of General Relativity with physical content and thus susceptible of verification or contradiction. To that end it is useful to introduce a kind of coordinates, that we call quasi-Minkowskian coordinates (QMC), as an empirical extension of the Minkowskian coordinates employed by the inertial observers in flat space-time to general observers in the curved situations in presence of gravitation. The QMC are operationally defined by some of the operational protocols through which the inertial observers determine their Minkowskian coordinates and may be mathematically characterized in a neighbourhood of the world-line of the corresponding observer. It is taken care of the fact that the set of all the operational protocols which are equivalent to measure a quantity in flat space-time split into inequivalent subsets of operational prescriptions under the presence of a gravitational field or when the observer is not inertial. We deal with the Hole Argument by resorting to de idea of the QMC and show how it is the metric field that supplies the physical meaning of coordinates and individuates point-events in regions of space-time where no other fields exist. Because of that the GCP has also value as a guiding principle supporting Einstein's appreciation of its heuristic worth in his reply to Kretschmann in 1918

    Anderson localization as a parametric instability of the linear kicked oscillator

    Full text link
    We rigorously analyse the correspondence between the one-dimensional standard Anderson model and a related classical system, the `kicked oscillator' with noisy frequency. We show that the Anderson localization corresponds to a parametric instability of the oscillator, with the localization length determined by an increment of the exponential growth of the energy. Analytical expression for a weak disorder is obtained, which is valid both inside the energy band and at the band edge.Comment: 7 pages, Revtex, no figures, submitted to Phys. Rev.

    Quantum Kinetic Theory III: Quantum kinetic master equation for strongly condensed trapped systems

    Full text link
    We extend quantum kinetic theory to deal with a strongly Bose-condensed atomic vapor in a trap. The method assumes that the majority of the vapor is not condensed, and acts as a bath of heat and atoms for the condensate. The condensate is described by the particle number conserving Bogoliubov method developed by one of the authors. We derive equations which describe the fluctuations of particle number and phase, and the growth of the Bose-Einstein condensate. The equilibrium state of the condensate is a mixture of states with different numbers of particles and quasiparticles. It is not a quantum superposition of states with different numbers of particles---nevertheless, the stationary state exhibits the property of off-diagonal long range order, to the extent that this concept makes sense in a tightly trapped condensate.Comment: 3 figures submitted to Physical Review
    • …
    corecore